課程介紹
人工智能(AI)是新一輪科技革命和產(chǎn)業(yè)變革的核心驅(qū)動力,將深刻改變?nèi)祟惿鐣,改變世界,對于實現(xiàn)社會生產(chǎn)力新躍升,提高綜合國力和國際競爭力具有重要意義。知識圖譜是人工智能技術(shù)的重要組成部分,是AI分支符號主義在新時期主要的落地技術(shù)方式。它以其強大的語義處理能力和開放組織能力,為互聯(lián)網(wǎng)時代的知識化組織和智能應(yīng)用奠定了基礎(chǔ)。自2012年谷歌在提出知識圖譜概念以來,國內(nèi)外大規(guī)模知識圖譜的研究不斷深入,并廣泛應(yīng)用于知識融合、語義搜索和推薦、問答和對話系統(tǒng)、大數(shù)據(jù)分析與決策等方面,應(yīng)用領(lǐng)域覆蓋金融、制造、政府、電信、電商、客服、零售、娛樂、醫(yī)療、農(nóng)業(yè)、出版、保險、知識服務(wù)、教育等行業(yè)。
為了貫徹落實國務(wù)院印發(fā)的“新一代人工智能發(fā)展規(guī)劃”精神,推廣人工智能與知識圖譜技術(shù)的應(yīng)用,中國信息化人才培訓(xùn)中心決定舉辦“知識圖譜核心技術(shù)與應(yīng)用培訓(xùn)班”。
培訓(xùn)方式
本培訓(xùn)班重視技術(shù)基礎(chǔ),強調(diào)實際應(yīng)用,采用技術(shù)原理與實際應(yīng)用相結(jié)合的方式進行教學(xué)。通過展示教師的實際科研成果,講述人工智能與知識圖譜的技術(shù)原理與應(yīng)用系統(tǒng)開發(fā)方法、知識圖譜系統(tǒng)開發(fā)工具使用方法。使學(xué)員掌握知識圖譜基礎(chǔ)與專門知識,獲得較強的知識圖譜應(yīng)用系統(tǒng)的分析、設(shè)計、實現(xiàn)能力。
參加培訓(xùn)的學(xué)員需帶筆記本電腦,配置為:Windows10(或windows7)操作系統(tǒng)、jdk-8u191-windows-x64、8G以上內(nèi)存、256G以上硬盤。
實驗軟件為:圖數(shù)據(jù)庫:neo4j3.5社區(qū)版;
深度學(xué)習開發(fā)環(huán)境:AnacondaAnaconda3-5.3(含Tensorflow與keras)。
第一天
第一講人工智能概述
1.1 人工智能(AI)概念
1.2 AI研究的主要技術(shù)問題
1.3 AI的主要學(xué)派
1.4 AI十大應(yīng)用案例
第二講知識圖譜概述
2.1知識圖譜(KG)概念
2.2知識圖譜的起源與發(fā)展
2.3典型知識圖譜項目簡介
2.4知識圖譜技術(shù)概述
2.5知識圖譜典型應(yīng)用
第三講知識表示
3.1基于符號主義的知識表示概述
3.1.1謂詞邏輯表示法
3.1.2產(chǎn)生式系統(tǒng)表示法
3.1.3語義網(wǎng)絡(luò)表示法
3.2知識圖譜的知識表示
3.2.1本體論概念
3.2.2RDF和RDFS
3.2.3.OWL和OWL2
3.3.4Json與Json-LD
3.3.5RDFa、HTML5、MicroData
3.3.6SPARQL查詢語言
第二天
第四講知識圖譜核心基礎(chǔ)技術(shù)(一)
神經(jīng)網(wǎng)絡(luò)與深度學(xué)習
4.1神經(jīng)網(wǎng)絡(luò)基本原理
4.2神經(jīng)網(wǎng)絡(luò)應(yīng)用舉例
4.3深度學(xué)習概述
4.4主流深度學(xué)習框架
4.4.1TesorFlow/Keras(安裝與運行)
4.4.2Caffe
4.5 卷積神經(jīng)網(wǎng)絡(luò)(CNN)
4.5.1CNN簡介
4.5.2CNN關(guān)鍵技術(shù):局部感知、卷積、池化、CNN訓(xùn)練
4.5.3典型卷積神經(jīng)網(wǎng)絡(luò)結(jié)構(gòu)
4.5.4深度殘差網(wǎng)絡(luò)
4.5.5案例:利用CNN進行時裝識別
4.5.6案例:利用CNN進行手寫數(shù)字識別
上機實踐:基于卷積神經(jīng)網(wǎng)絡(luò)的手寫體數(shù)字識別
第五講知識圖譜核心基礎(chǔ)技術(shù)(二)
基于深度學(xué)習的自然語言處理
5.1循環(huán)神經(jīng)網(wǎng)絡(luò)(RNN)概述
5.2基本RNN
5.3長短時記憶模型(LSTM)
5.4門控循環(huán)單元(GRU)
5.5基于TensorFlow的自然語言處理
5.5.2自然語言處理處理概述
5.5.1文本向量化(vectorize)
5.5.1.1one-hot編碼
5.5.1.2詞嵌入(wordembedding)概念
5.5.1.3詞嵌入(wordembedding)主要算法
5.5.1.4TensorFlow/Keras的嵌入層實現(xiàn)
上機實踐:基于循環(huán)神經(jīng)網(wǎng)絡(luò)的情感識別
第三天
第六講知識抽取與融合
6.1知識抽取基本方法
6.1.1實體識別方法
6.1.2關(guān)系抽取方法
6.1.3事件抽取方法
6.2面向結(jié)構(gòu)化數(shù)據(jù)的知識抽取
6.2.1D2RQ
6.2.2R2RML
6.3面向半結(jié)構(gòu)化數(shù)據(jù)的知識抽取
6.3.1基于正則表達式的方法
6.3.2基于包裝器的方法
6.4.面向非結(jié)構(gòu)化數(shù)據(jù)的知識抽取
6.4.1基于規(guī)則的實體識別
6.4.2基于深度學(xué)習的實體識別
6.4.3基于模板的關(guān)系抽取
6.4.4基于深度學(xué)習的關(guān)系抽取
6.5實體消歧與鏈接
6.5.1實體消歧
6.5.2實體鏈接
6.6知識融合
6.6.1框架匹配
6.6.2實體對齊
6.6.3沖突檢測與消解
第七講存儲與檢索
7.1知識圖譜的存儲與檢索簡介
7.2知識圖譜的存儲
7.2.1基于表結(jié)構(gòu)的存儲
7.2.2基于圖結(jié)構(gòu)的存儲
7.3大規(guī)模知識圖譜存儲解決方案
7.4屬性圖數(shù)據(jù)庫NEO4J
7.5知識圖譜的檢索
上機實踐:利用NEO4J進行知識圖譜存儲與檢索
第八講知識圖譜案例
8.1金融風險防范知識圖譜構(gòu)建
8.2知識問答系統(tǒng)構(gòu)建
張老師,博士畢業(yè)于西安交通大學(xué),現(xiàn)為某大學(xué)計算機學(xué)院2級教授,博士生導(dǎo)師,陜西省XXX專家組專家。曾任陜西省信息化專家組專家、陜西省制造業(yè)信息化專家組專家、中國計算機學(xué)會服務(wù)計算專委會委員、信息系統(tǒng)專委會委員,計算機學(xué)院副院長、計算機科學(xué)與技術(shù)學(xué)科帶頭人。主持完成科研項目30項(其中國家863課題6項);參編出版教材5部。作為第二作者參編了國家95規(guī)劃教材《人工智能基礎(chǔ)》(電子工業(yè)出版社,2000年)。曾獲省部級科技進步獎8項,其中“神經(jīng)網(wǎng)絡(luò)專家系統(tǒng)及其應(yīng)用”獲機械工業(yè)部科技進步三等獎(1996)。累計培養(yǎng)已畢業(yè)博士研究生24人,碩士研究生132人。
1985年以來,主要從事人工智能、因特信息網(wǎng)方面的教學(xué)與研究,進行過多個實用人工智能系統(tǒng)、網(wǎng)絡(luò)與信息系統(tǒng)的規(guī)劃、設(shè)計與開發(fā)。2010年以來,主要從事人工智能、云計算、大數(shù)據(jù)與深度學(xué)習方面的研究與教學(xué)。